Α

Esame di Meccanica del volo — Modulo di Manovre e Stabilità — Prova scritta, 14 giugno 2012

OUESITI

- (1) Illustrare dal punto di vista fisico, aiutandosi con opportuni disegni, la genesi delle seguenti grandezze: i coefficienti di smorzamento del rollio e dell'imbardata di un velivolo, gli effetti incrociati $C_{\mathcal{L}_r}$ e $C_{\mathcal{N}_p}$, le potenze di controllo laterale e direzionale. Per ciascuna di esse si dimostrino le formule di calcolo.
- (2) Illustrare il criterio di stabilità laterale e ricavare l'espressione dell'effetto diedro di un'ala. Inoltre, si definisca il concetto di effetto diedro equivalente di una configurazione ala-fusoliera con "ala-alta" o "ala bassa".

A tal proposito, sia data un'ala trapezia con rapporto di rastremazione $\lambda=0.4$ che montata sulla fusoliera in posizione bassa determina un $C_{\mathcal{X}_{\beta}}=0.0008\,\mathrm{deg^{-1}}$. Calcolarne l'angolo diedro equivalente. Calcolare il valore dell'angolo diedro che il progettista dovrà adottare per avere un effetto diedro pari a $-0.0003\,\mathrm{deg^{-1}}$. Per la stessa ala, qualora sia dotata anche di un angolo di freccia $\Lambda_{c/2}=32^\circ$, calcolare l'effetto diedro dovuto alla freccia per unità di C_L .

- (3) Il velivolo assegnato è quello rappresentato nella figura 2, ha una massa $m = 29500 \,\mathrm{kg}$, un numero di Mach di volo $M = 0.75 \,\mathrm{ad}$ una quota $h_{\mathrm{ASL}} = 9100 \,\mathrm{m}$ (*Above Sea Level*). Il coefficiente di resistenza a portanza nulla è $C_{D_0} = 0.024$; il fattore di Oswald della polare è $e_{\mathrm{tot}} = 0.78$. il fattore di resistenza indotta dell'alla è $e_{\mathrm{W}} = 0.85$.
- Utilizzare il seguente modello di atmosfera:

$$\frac{T(h)}{T_{\rm SL}} = \sigma(h) = \left(1 + \frac{LR}{T_{\rm SL}}h\right)^{4,257}, \quad LR = -0,0065 \,\frac{\rm K}{\rm m} \,, \quad T_{\rm SL} = 288,16 \,\rm K \,,$$

$$\rho(h) = \rho_{\rm SL}\sigma(h) \,, \quad \rho_{\rm SL} = 1,225 \,\frac{\rm kg}{\rm m^3} \,, \quad R_{\rm aria} = 287 \,\frac{\rm N\,m}{\rm kg\,K} \,, \quad \gamma_{\rm aria} = 1,4 \tag{1}$$

- L'ala è a profilo costante lungo l'apertura con $\alpha_{0\ell,r} = \alpha_{0\ell,t} = -3 \deg$, $C_{\ell\alpha,r} = C_{\ell\alpha,t} = 0.106 \deg^{-1}$, $C_{m_{ac},r} = C_{m_{ac},t} = -0.07$. La posizione adimensionale lungo la corda media aerodinamica del centro aerodinamico dell'ala è $x_{ac,W}/\bar{c} = 0.285$.
- Per superfici portanti trapezie sono notevoli le formule:

$$\tan \Lambda_{c/n} = \tan \Lambda_{le} - \frac{(4/n)(1-\lambda)}{\mathcal{R}(1+\lambda)} , \quad \bar{c} = \frac{2}{3}c_r \frac{1+\lambda+\lambda^2}{1+\lambda} , \quad X_{le,\bar{c}} = \frac{b}{6} \frac{1+2\lambda}{1+\lambda} \tan \Lambda_{le} \quad \text{(distanza del l.e. della c.m.a.}$$
 (2)

- Si assuma un $C_{\mathcal{M}_{ac},W} = -0.08$.
- \square Calcolare l'angolo di portanza nulla dell'ala $\alpha_{0L,W}$.
- Calcolare i gradienti delle rette di portanza (in rad⁻¹) delle ali finite con la cosiddetta formula di Polhamus:

$$C_{L_{\alpha}} = \frac{2\pi \mathcal{R}}{2 + \sqrt{4 + \frac{\mathcal{R}^{2}(1 - M^{2})}{k_{P}^{2}} \left(1 + \frac{\tan^{2} \Lambda_{c/2}}{1 - M^{2}}\right)}} \quad \text{con} \quad k_{P} = \begin{cases} 1 + \mathcal{R} \frac{1,87 - 0,000233\Lambda_{le}}{100} & \text{se } \mathcal{R} < 4 \\ 1 + \frac{(8,2 - 2,3\Lambda_{le}) - \mathcal{R}(0,22 - 0,153\Lambda_{le})}{100} & \text{se } \mathcal{R} \ge 4 \end{cases}$$

$$(3)$$

$$(con \Lambda_{le} \text{ in rad})$$

res Per stimare il gradiente di downwash in coda si utilizzi la seguente formula analitica:

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}\alpha} = \sqrt{1 - M^2} \left[4,44 \left(K_{\mathcal{R}} K_{\lambda} K_{\mathrm{H}} \sqrt{\cos \Lambda_{c/4,\mathrm{W}}} \right)^{1,19} \right] \tag{4}$$

con $\Lambda_{c/4}$ l'angolo di freccia della linea dei fuochi. I fattori moltiplicativi $K_{\mathcal{R}}$, K_{λ} e K_{H} tengono conto, rispettivamente, dell'allungamento \mathcal{R} , della rastremazione λ dell'ala e del posizionamento del piano di coda orizzontale. Essi sono espressi dalle formule

$$K_{\mathcal{R}} = \frac{1}{\mathcal{R}_{W}} - \frac{1}{1 + \mathcal{R}_{W}^{1,7}}, \qquad K_{\lambda} = \frac{10 - 3\lambda_{W}}{7}, \qquad K_{H} = \frac{1 - (h_{WH}/b_{W})}{(2X_{WH}/b_{W})^{1/3}}$$
 (5)

dove $h_{\rm WH}$ è la distanza verticale dalla corda $c_{\rm r}$ di radice dell'ala del centro aerodinamico dell'impennaggio orizzontale. Assumere che quest'ultimo si trovi ad 1/4 della $\bar{c}_{\rm H}$. Per convenzione $h_{\rm WH}$ è positiva se il piano di coda è situato al di sopra della corda di radice. La quantità $X_{\rm WH}$ è la distanza longitudinale del centro aerodinamico dell'impennaggio orizzontale dal punto a un quarto della corda di radice alare $c_{\rm r,W}$.

Si assuma un rapporto delle pressioni dinamiche $\eta_{\rm H}=0.9$.

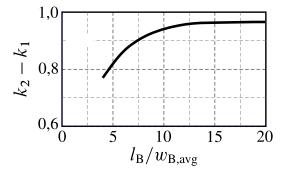


Figura 1 Fattore di interferenza della fusoliera K_N .

Calcolare il coefficiente di momento di beccheggio della fusoliera in codizioni di portanza nulla con la formula seguente (con angoli espressi in deg):

$$(C_{\mathcal{M}_0})_{\rm f} = \frac{k_2 - k_1}{36.5 \, S\bar{c}} \sum_{k=1}^N w_k^2 \left[-i_{\rm W} + \alpha_{0L,\rm W} + i_{{\rm cl},k} \right] \Delta x_k \tag{6}$$

La formula (6) richiede di discretizzare la fusoliera in N tronchi, ciascuno di larghezza w_k e di lunghezza Δx_k . L'angolo $i_{\rm cl}$ è la pendenza locale della cosiddetta "fuselage camber line", linea media della sagoma laterale della fusoliera. La grandezza k_2-k_1 rappresenta il cosiddetto "added mass factor" di Munk ed è funzione del rapporto di snellezza della fusoliera $l_{\rm B}/w_{\rm B,avg}$, dove $l_{\rm B}$ è la lunghezza totale della fusoliera e $w_{\rm B,avg}$ è la larghezza media. Si faccia riferimento alle figure 1 e 2 e alla tabella 1 dove N=13.

Tabella 1 Dati per il calcolo di $C_{\mathcal{M}_0,B}$ e $C_{\mathcal{M}_{\alpha},B}$.

Table in Earlier of $M_{0,B} \in \mathcal{M}_{\alpha,B}$.					
k	x_k (m)	Δx_k (m)	w_k (m)	$i_{\mathrm{cl},k}$ (deg)	$\left(\frac{\partial \bar{\varepsilon}}{\partial \alpha}\right)_k$
1	10,49	2,3	1,95	-12,7	1,07
2	8,14	2,3	3,08	-9,4	1,09
3	5,82	2,3	3,08	-1,7	1,14
4	3,51	2,3	3,08	-0,5	1,26
5	1,16	2,3	3,08	0	2,34
6	3,57	2,4	3,08	0	0,17
7	1,19	2,4	3,08	0	0,06
8	0,98	2	3,08	0	0,05
9	2,93	2	6,83	-1,7	0,14
10	4,88	2	6,77	-4,3	0,23
11	6,8	2	4,54	-7,3	0,32
12	8,75	2	1,95	-8,2	0,42
13	10,7	2	0,88	-4,8	0,51

Calcolare il gradiente in deg⁻¹ del coefficiente di momento dovuto alla fusoliera con la formula seguente:

$$(C_{\mathcal{M}_{\alpha}})_{f} = \frac{C_{L_{\alpha},W}}{2,87 \, S\bar{c}} \sum_{k=1}^{N} w_{k}^{2} \left(\frac{\partial \bar{\varepsilon}}{\partial \alpha}\right)_{k} \Delta x_{k} \tag{7}$$

I valori dei gradienti $(\partial \bar{\epsilon}/\partial \alpha)_k$ sono anch'essi riportati nella tabella 1. Il valore di $C_{\mathcal{M}_{\alpha,f}}$ consente di conoscere il discostamento del centro aerodinamico del velivolo parziale rispetto a quello dell'ala.

- Calcolare il margine di stabilità a comandi bloccati.
- Per volo a quota costante e $\delta_{\rm e}=0$, calcolare la deflessione $i_{\rm H}$ di equilibrio e la spinta necessaria. È consentito disaccoppiare l'equazioni di equilibrio alla traslazione verticale da quella alla rotazione di beccheggio ponendo in prima approssimazione $L\approx L_{\rm WB}$; successivamente si valuti l'errore commesso calcolando $L_{\rm H}/L$.

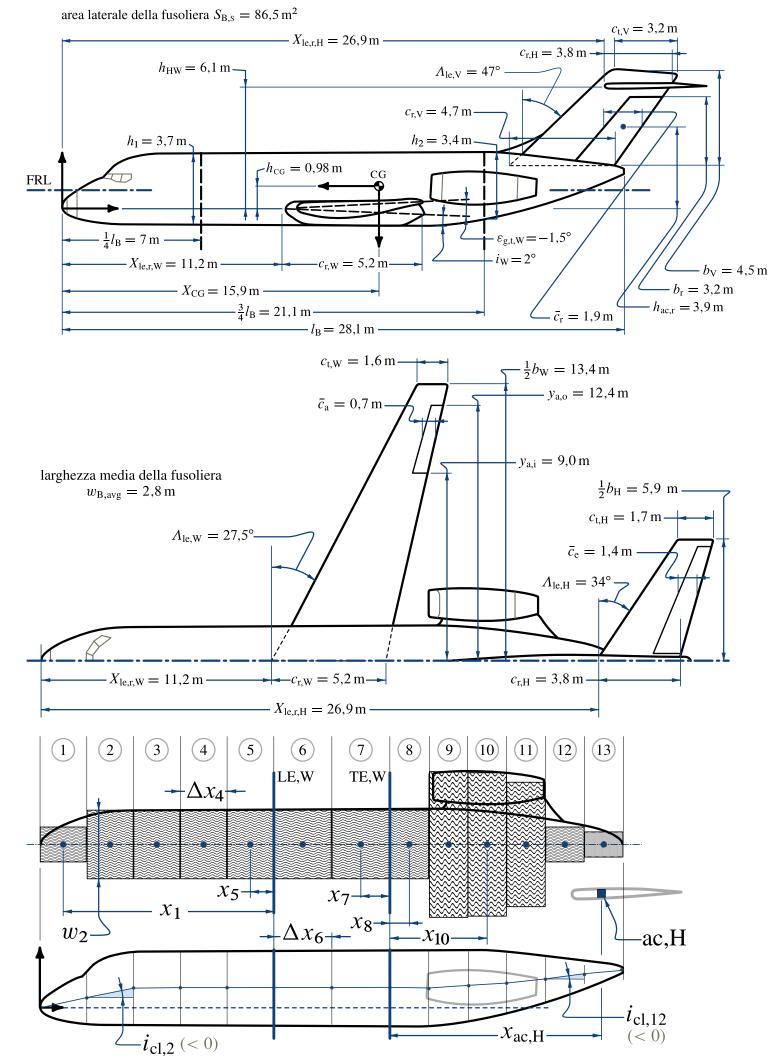


Figura 2 Viste e dimensioni principali di un velivolo del tipo McDonnell Douglas DC9-10.